

International Interdisciplinary Congress on Renewable Energies, Industrial Maintenance, Mechatronics and Informatics Booklets



RENIECYT - LATINDEX - Research Gate - DULCINEA - CLASE - Sudoc - HISPANA - SHERPA UNIVERSIA - Google Scholar DOI - REDIB - Mendeley - DIALNET - ROAD - ORCID

### Title: Mechanical caracterization of the 14 and 15 lumbar vertebrae

### Authors: VILLAGRÁN-VILLEGAS, Luz Yazmin, SIORDIA-VÁZQUEZ, Xóchitl, CUÉLLAR-OROZCO, Maricela and PATIÑO-ORTIZ, Miguel

| Editorial label ECORFAN: 607-8695<br>BCIERMMI Control Number: 2021-01<br>BCIERMMI Classification (2021): 271021-0001 |                | RN/     | <b>4:</b> 03-2010-( | <b>Pages:</b> 16<br>)32610115700-14 |
|----------------------------------------------------------------------------------------------------------------------|----------------|---------|---------------------|-------------------------------------|
| ECORFAN-México, S.C.                                                                                                 |                |         | Holdings            |                                     |
| 143 – 50 Itzopan Street                                                                                              |                | Mexico  | Colombia            | Guatemala                           |
| La Florida, Ecatepec Municipality                                                                                    |                | Rolivia |                     | Democratic                          |
| Mexico State, 55120 Zipcode                                                                                          | www.confon.org | DOIIVIA | Cameroon            | Democratic                          |
| Phone: +52   55 6 59 2296                                                                                            | www.econan.org | Spain   | El Salvador         | Republic                            |
| Skype: ecorfan-mexico.s.c.                                                                                           |                |         | <u> </u>            |                                     |
| E-mail: contacto@ecorfan.org                                                                                         |                | Ecuador | laiwan              | of Congo                            |
| Facebook: ECORFAN-México S. C.                                                                                       |                | Down    |                     |                                     |
| Twitter: @EcorfanC                                                                                                   |                | Peru    | Paraguay            | Nicaragua                           |

### Introduction

- Methodology
- Results
- Annexes
- Conclusions

References

# Introduction

En el presente trabajo de investigación se lleva acabo la caracterización mecánica de las vértebras lumbares L4 y L5, apoyados con el escáner óptico ATOS&GOM®, ya que, hasta el momento, no se han trabajado los modelos en 3D con alta resolución.

La selección de las vértebras lumbares L4 y L5, se debe a que la región lumbar está propensa a sufrir algún tipo de lesión, debido a que esta área es la que soporta el peso de todos los elementos corporales adicionados a ella. Para una mejor comprensión de los problemas clínicos de la columna vertebral y su funcionamiento, es indispensable la aplicación de la teoría mecánica. Este trabajo se enfoca en la región lumbar del ser humano.

El principal objetivo de esta investigación es realizar un análisis de esfuerzos de Von-Mises, aplicando el software ANSYS® Release 18.0 a las muestras vertebrales, simulando el esfuerzo causado en una fractura vertebral por compresión.

# Methodology



Los moldes se efectuaron de yeso de alta resistencia, tipo IV, por la similitud geométrica, se desarrollaron moldes de vértebras de porcinos y vértebras humanas

En los moldes bipartidos en alginato, se efectuó el vaciado de cera de parafina para obtener réplicas de las vértebras, las cuales permitieron adquirir nuevos moldes de yeso con la técnica conocida como "a la cera perdida", para recibir el aluminio fundido.

Se llevó a cabo la fundición del aluminio a temperaturas mayores de 660.3 °C; al estar en estado líquido se vació por gravedad en los moldes de yeso; después de enfriarse, y con a una temperatura manipulable, se desmoldaron y se retiraron los excedentes generados por el vaciado con la ayuda de un esmeril de banco y de un micromotor con una fresa para metal.





A) Vista superior

C) Vista lateral derecha



B) Vista anterior



D) Vista lateral izquierda



Figura 1 Modelos de yeso y cera.



#### Figura 2 Modelos de aluminio.

Se obtuvieron nubes de puntos de las muestras vertebrales en formato STL, de las cuales se muestra su información en la Tabla 1.



#### Tabla 1 Número de puntos en muestras vertebrales.

| MUESTRA                  | NO. DE PUNTOS |
|--------------------------|---------------|
| Vértebra lumbar porcina  | 372 498       |
| Vértebra lumbar humana 4 | 531 324       |
| Vértebra lumbar humana 5 | 399 298       |

#### Figura 3 Scanner óptico ATOS & GOM y vértebra.

El análisis numérico debe contar con las muestras de vértebras lumbares en 3D de una manera solidificada, así que con la ayuda del software CREO PARAMETRIC 5.0® se convirtió la nube de puntos en formato STL en un dibujo 3D sólido en formato SAT.

La calidad utilizada para los dibujos sólidos de las muestras vertebrales, requerida por el software, puede variar desde el Nivel 1 a 10; Se uso el Nivel 10, ya que dicho nivel es el más alto en definición de dibujo, lo cual ayudó a que el análisis numérico fuera más apegado y preciso a las geometrías de las muestras originales.



#### Figura 4 Muestra de vértebra humana solidificada.

VILLAGRAN-VILLEGAS, Luz Yazmin †\*, SIORDIA-VÁSQUEZ, Xóchitl\*, CUELLAR-OROZCO, Maricela †, PATIÑO-ORTIZ, Miguel †. HANDBOOK, CIERMMI, MUJERES EN LA CIENCIA 2021, Temas Selectos de MECATRÓNICA

En el análisis de esfuerzos se utilizó el software ANSYS® Workbench™ Release 18.0, se importaron las muestras solidificadas de CREO PARAMETRIC 5.0®

Los datos para establecer las propiedades del hueso lumbar humano y porcino son mostrados en la tabla 2.

| MATERIAL                   | MÓDULO ELÁSTICO (MPa) | COEFICIENTE DE POISSON | DENSIDAD APARENTE (g/<br>) | REFERENCIAS                             |
|----------------------------|-----------------------|------------------------|----------------------------|-----------------------------------------|
| Hueso<br>lumbar<br>porcino | 229                   | 0.3                    | 0.14 [3]                   | [2] J. Teo, 2006<br>[3] T. Keavy, 1997  |
| Hueso<br>lumbar<br>humano  | 100                   | 0.2                    | 0.14 [3]                   | [4] J. Wang, 2000<br>[3] T. Keavy, 1997 |

#### Tabla 2Propiedades de los materiales.

En el proceso de mallado de las muestras vertebrales, se convirtieron por secciones todas las pequeñas caras que tenían las muestras sólidas salidas de CREO PARAMETRIC 5.0®, con la finalidad de que el software las detectara y pudiera realizar el mallado.



#### Figura 5 Seccionado de caras con mayor superficie.

VILLAGRAN-VILLEGAS, Luz Yazmin †\*, SIORDIA-VÁSQUEZ, Xóchitl\*, CUELLAR-OROZCO, Maricela †, PATIÑO-ORTIZ, Miguel †. HANDBOOK, CIERMMI, MUJERES EN LA CIENCIA 2021, Temas Selectos de MECATRÓNICA

#### Resultados del mallado

#### Tabla 3 Estadísticas del mallado.

| MUESTRA                  | NODOS   | ELEMENTOS |
|--------------------------|---------|-----------|
| Vértebra lumbar porcina  | 260 796 | 176 696   |
| Vértebra lumbar humana 4 | 180 294 | 113 346   |
| Vértebra lumbar humana 5 | 175 373 | 109 781   |



Figura 6 Muestra vertebral mallada.

Se llevó a cabo la simulación de la fractura por compresión considerando las siguientes condiciones de frontera:

- Se aplicaron tres cargas a cada muestra vertebral, dos de ellas según estudios realizados por Nachemson en el año 1976 [5]; un sujeto que paradójicamente al estar sentado (sedente) sin respaldo dorsal incrementa la presión a 140% de su peso corporal.
- Para el caso, el sujeto tiene 70 kg, por lo cual se tuvo una carga de 960 N. ; en donde ambas cargas a compresión se fijan en las caras superior e inferior del cuerpo vertebral.

La tercera carga fue de 8000 N, carga máxima a la que falla el hueso lumbar, tomada de la literatura "Clinical Biomechanics of the Spine" del año 1990 [6], considerando que pueda ser producida por algún accidente en la vida cotidiana; esta carga cortante fue fijada en la zona anterior del cuerpo vertebral.

En la Figura 7 se muestran en color rojo las zonas en las que fueron fijadas las tres cargas mencionadas y en color morado las zonas que soportaron dichas cargas.



Figura 6 Condiciones de frontera.

## Results

Los resultados obtenidos para la muestra vertebral porcina fueron los valores máximos y mínimos de concentración de esfuerzos en las zonas laterales, caras superior e inferior y zona anterior del cuerpo vertebral, así como en la zona del arco vertebral y en la escotadura superior. Particularmente se presentaron los esfuerzos máximos en la zona lateral y arco vertebral y los mínimos en la zona de la apófisis espinosa.



#### Figura 5 Resultados en vértebra lumbar porcina.

VILLAGRAN-VILLEGAS, Luz Yazmin †\*, SIORDIA-VÁSQUEZ, Xóchitl\*, CUELLAR-OROZCO, Maricela †, PATIÑO-ORTIZ, Miguel †. HANDBOOK, CIERMMI, MUJERES EN LA CIENCIA 2021, Temas Selectos de MECATRÓNICA

### Results





Figura 6 Resultados en vértebra lumbar humana L4. Figura 7 Resultados en vértebra lumbar humana L5.

### Results

#### Tabla 4 Valores de análisis de esfuerzos de Von-Mises

| MUESTRA                  | MÁXIMO (MPa) | MÍNIMO (MPa) |
|--------------------------|--------------|--------------|
| Vértebra lumbar porcina  | 101.2        | 0            |
| Vértebra lumbar humana 4 | 134.82       | 6.203e-10    |
| Vértebra lumbar humana 5 | 189.6        | 2.0437e-9    |

## Conclusions

En el proceso de simulación, al aplicar cargas a compresión de 960 N y cortante de 8000 N distribuidas en cada vértebra lumbar, se obtuvo un esfuerzo máximo de Von Mises de 134.82 MPa Max y 6.203e-10 MPa Min para la vértebra lumbar 4, 189.6 MPa Max y 2.0437e-9 para la vértebra lumbar 5 y 101.2 MPa Max y 0 Min para la vértebra lumbar porcina. Los puntos críticos son arriba de los 100 MPa para los tres casos; se presentaron los valores máximos de esfuerzo en el cuerpo vertebral y los mínimos en la apófisis espinosa.

En el presente trabajo fue posible obtener un modelo numérico de la lumbar porcina y las lumbares humanas L4 y L5; se sugiere replicar diversas situaciones y condiciones mecánicas a los modelos obtenidos para estudios futuros. Se obtuvieron modelos en 3D de muestras reales porcina, humanas (L4 y L5) con una precisión de escaneo de 16 millones de puntos en una captura de 1-2 segundos; es importante contar con un equipo de cómputo que tenga la capacidad para realizar el proceso de simulación.

### References

A. White III, M. Panjabi (1990). Clinical Biomechanics of the Spine. 2da Ed. Lippincott Williams & Wilkins. Philadelphia, USA. pp. 2-56.

Blanco Ortiz, K. A. A. (2021). Propuesta de protocolo de ejercicios para fortalecimiento del CORE como medida preventiva en lesiones músculo esqueléticas del raquis lumbar en trabajadores que se encuentran en sedestación con edades comprendidas entre 25 y 30 años por medio de un análisis (Doctoral dissertation).

J. Teo, K. S.-H. (2006). "Reationship between CT intensity, micro-architecture and mechanical properties of porcine vertebral cancellous bone". En Clinical Biomechanics (Vol. 21, págs. 235-244).

J. Wang, M. P.-A. (2000). "Viscoelastic finite-element analysis of a lumbar motion segment in combined compression and sagital flexion". En Spine (Vol. 25, págs. 310-318).

Nachemson A.L (1976). The lumbar spine. An orthopedic challenge. Spine.

T. Keavy, T. p. (1997). "Systematic and random errors in compression testing of trabecular bone". En Orthopaedic Research (Vol. 15, págs. 101-110).

Vanaclocha, V. (2016). Clínica Neuros. Obtenido de Clínica Neuros: http://neuros.net/es/fractura-aplastamiento\_vertebral/



© ECORFAN-Mexico, S.C.

No part of this document covered by the Federal Copyright Law may be reproduced, transmitted or used in any form or medium, whether graphic, electronic or mechanical, including but not limited to the following: Citations in articles and comments Bibliographical, compilation of radio or electronic journalistic data. For the effects of articles 13, 162,163 fraction I, 164 fraction I, 168, 169,209 fraction III and other relative of the Federal Law of Copyright. Violations: Be forced to prosecute under Mexican copyright law. The use of general descriptive names, registered names, trademarks, in this publication do not imply, uniformly in the absence of a specific statement, that such names are exempt from the relevant protector in laws and regulations of Mexico and therefore free for General use of the international scientific community. BCIERMMI is part of the media of ECORFAN-Mexico, S.C., E: 94-443.F: 008- (www.ecorfan.org/booklets)